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The development of magnetohydrodynamic flow due to the passage of a uniform 
electric current past a sphere immersed in an incompressible viscous conducting 
fluid extending to infinity is considered. The flow field is the response of the fluid 
to the Lorentz force set up by the electric current and the associated magnetic 
field. The solution is based on the assumption that the flow field is weak and 
has a negligible effect on the electromagnetic variables. We also assume that the 
convection terms in the momentum equation are negligible. The solution, 
obtained by means of Laplace transforms, is analytic except for the evaluation 
of an integral which is done numerically. It is shown that the flow field spreads 
radially from the sphere into the fluid. The rate of development of the flow 
field increases with the ratio of the conductivity of the sphere to that of the fluid. 

1. Introduction 
When a conducting fluid extending to infinity is permeated by an electric 

current which is dependent on the spatial variables a magnetic field is set up. 
In  three-dimensional configurations the associated Lorentz force is rotational 
and cannot be balanced by a hydrostatic pressure. Thus a flow field is set up. 
Such flow fields occur in the case of an electric current discharge (Sozou & 
English 1972) or when a uniform electric current through a conducting fluid is 
distorted because different fluid regions have different electrical conductivities. 
Chow & Halat (1969), for example, considered the flow field set up about a solid 
sphere immersed in a viscous conducting fluid occupying the whole of space and 
subjected to a uniform electric field. The more general case of the flow field about 
a spheroid having its axis parallel to the direction of the undisturbed current a t  
i nh i ty  was considered by Sozou (1970a, b).  

The work of Sozou & English is an exact solution of the equations of motion 
coupled with Maxwell’s equations. The work of Chow & Halat (1969) and Sozou 
(1970a, b )  is based on the assumption that the flow field has a negligible effect 
on the electromagnetic field and, as a first approximation, the inertia terms in the 
momentum equation can be ignored. The above papers dealt with the steady 
state which is achieved some time after the application of the electric field and 
the passage of the electric current. Here we investigate the development of the 
flow field considered by Chow & Halat. We make the same basic approximations, 
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namely, neglect the effect of the flow field on the electromagnetic field and 
the convection terms in the momentum equation. We also assume that the 
electromagnetic field is set up instantaneously, that is, we investigate the response 
of the fluid to the application of a Lorentz force which is independent of time. 
The analysis for the development of the flow field about a spheroid in a conducting 
fluid, with its axis parallel to the direction of the applied electric current, is 
rather involved. It contains infinite series of spheroidal wave functions and we 
decided not to pursue that case. 

2. Equations of the problem 
We consider an infinite incompressible viscous conducting fluid containing an 

axially symmetric conducting body. This configuration is suddenly subjected 
to a uniform electric field E parallel to the axis of the body. The induced current 
is J and its value at  infinity is J,. We assume that J and the associated magnetic 
field B are set up instantaneously. The fluid is then set in motion by the rotational 
Lorentz force. If we also assume that the fluid velocity v is small and its effect 
on the electromagnetic fields is negligible, that is that J is driven solely by the 
electric field, B and J satisfy the equations 

V X B  =peJ, (1) 

V X J = O ,  (2) 

If we assume that the induced flow field v is sufficiently weak for the convection 

(3) 

where pe is the magnetic permeability of the medium. 

terms to be negligible, the momentum equation is 

where p ,  p and po denote the fluid density, pressure and coefficient of viscosity 
respectively. 

We use cylindrical polar co-ordinates (w, 8, x) with the x axis along the axis 
of symmetry of the body. Owing to the geometry of the problem J and v lie in 
meridian planes through the axis and the magnetic field lines are circles about 
the axis of symmetry. 

and v 
in terms of a stream function $2, such that 

p &/at + V p  +poV x V x v - J x B = 0, 

It is convenient to express J in terms of a current stream function 

v = ( - aim ax, 0, aiw am) $2. (5) 

€3 = fWl@,@/m ( 6 )  

and hence J x B = - ($1lPP2) V l .  (7) 

Using (1) and (4) we find that B is given by 

If we now take the curl of (3) and make use of ( 5 )  and (7) we find that $l and 
p2 are connected by the equation 
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where 

For any particular axisymmetric configuration we must first find that is, 

( 9 )  
solve the equation D2$, = 0 

and then solve (8) for $2. Equation ( 9 )  must be solved for the fluid and the body 
regions. At the body-fluid interface thenormal component of J and the tangential 
component of E (= J/v, u being the electrical conductivity) are continuous. 
Having obtained $, we can then take the Laplace transform of (8) with respect 
to t and obtain an equation in q2 and then invert q2 and find $2(w, x, t ) .  

3. Flow set up around a sphere 
For this case it is convenient to use a spherical polar co-ordinate system 

(r ,  8, #) with the origin at  the centre of the sphere and the axis 8 = 0 along the 
direction of the undisturbed electric field E. It can be found from books on 
electromagnetism or easily be shown that for this case 

= Bpu, Jo(r2- 2Roa3/r) sin28, (10) 

where a is the radius of the sphere and Ro = (a - vo)/(2a + go), (r being the con- 
ductivity of the fluid and a* that ofthe sphere. Now in spherical polar co-ordinates 
(8) becomes 

(ff - DZ)  ~ 2 $ ~  = 3Pe - Ro Jiz ( 1  - 2R0 5) sin2 0 cos 8, (11) 
Po 

where now 

and ,u = cos 0. If we now set 

r = aR, t = (a2p/,uo) T 
and $2 =f@, T)P(1-P2) ,  
(1 I) reduces to 

where h = 3peabJg/po. 
The boundary conditions are that the velocity vanishes on the sphere, that is, 

f ( 1 ,  T )  = a f ( 1 ,  T)/aR = 0,  (15) 

and the velocity is h i t e  at infinity. This latter somewhat unrealistic condition 
is derived from the principle of minimum singularity. The reason for the non- 
vanishing of the velocity field at infinity is due to the neglect of the convection 
terms in the momentum equation (Sozou 1970a). 

If we multiply (14) by e-sr, integrate from T = 0 to T = co and assume that 
at  T = 0 the velocity field is zero we obtain 
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where f = Sm e+‘f(R, T )  dT. (17) 
0 

The solution of (16), making the velocity field finite a t  infinity, is 

where A and d are constants, determined from ( 15)y Kg is the usual Bessel func- 
tion, that is, 

and u = 84. (20 )  

On using the Laplace transform of the boundary conditions (15), after some 
algebra, (18) reduces to 

1 ef io j  - 
f (R,  T) = 7/ . f ( R ,  s) esT ds. In  the usual way 

277% c-am 

It is obvious, from ( 2 1 ) ,  that the origin of the s plane is a branch point off. 
We makef single-valued by cutting the s plane all along the negative real axis. 
Then it is easy to show that f has no singularities except for a simple pole at  the 
origin. For small s 

I n  the usual way the integral on the right-hand side of ( 2 2 )  is reduced to an 
integral all along the cut of the s plane plus 277i times the residue of the pole at  
the origin. The integral along the cut is from s = - co to s = 0 on the lower part 
of the cut, where ss = - ilsBl, and from s = 0 to s = - co on the upper part, where 
si = ils*/. After some manipulation we obtain 

f =  - g 0 ( , , _ 2 - R 0 + 2 + 9 )  24 -%Y/r 677R e-””P(p ,R)dp ,  ( 2 4 )  

where Y stands for imaginary part and 

eip*t S” 1 ( 3 + 3ipst - pt2)2 
1 

P 
+ - ( 3  + 3ip4R - p R 2 )  e-iptR 

x [ip*t4 + 3t3 + R0{# + &p*t - &ptz + $ipit3 + $p2t4 eip’t E,(ipBt)}] dt. ( 2 5 )  

E,(x) represents the exponential integral, that is, 
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FIGURE 1. Streamlines of the flow field set up by an electric current past an insulating 
sphere. At i n h i t y  the current is parallel to the x: axis. The numbers on the curves are 
values of 241$l/h. The curves in each quarter refer to the time T shown there. 

R\T 1 10 50 03 

1.2 0,029 0.048 0.054 0.060 
2 0.425 0.797 0.939 1-062 
3 0.970 2.344 2.924 3.444 
4 1-343 4.196 5.598 6.891 
5 1.563 6.137 8.802 11.36 
6 1.690 8.017 12-41 16.84 

TABLE 1. Values of - 24flA for some R and T for the case of an insulating sphere 

The computation of the part of (24) involving integration does not present 
problems. For small p 

93’(p,  R) M - (2R5- 5R2+ 3)/15p*. (26) 

In  the range p = 0-0-01, F ( p ,  R) was approximated by (26) and the integral 
was evaluated analytically by using the first few terms of the expansion of 
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FIGURE 2. Streamlines of the flow field set up by an electric current past a perfectly 
conducting sphere. At infinity the current is parallel to the IL: axis. The numbers on the 
curves are values of 241$//h. The curves in each quarter refer to the flow field a t  the time T 
shown there. 

R\T 1 10 50 cc 

1.2 0.093 0-135 0.150 0.162 
2 1.142 1.962 2.251 2.500 
3 2.330 5.326 6.513 7.556 
4 3-029 9.170 12.04 14.62 
5 3.391 13.11 18.55 23.68 
6 3.583 16-88 25.84 34.7 2 

TABLE 2. Values of 24flh for some R and T for the case of a perfectly conducting sphere 

exp ( - p T ) .  Thence the integral was evaluated numerically by using Simpson’s 
rule. The integration with respect to p was terminated a t  p = 25. For p > 25, 
F(p7 R )  is small. The accuracy of our computations was checked by comparing 
our f (R ,  0) with f (R ,  co). For R > 1.4 our f (R ,  0) differed from zero by less than 
one per cent of f (R,  00). 



MHD $ow due to passage of electric current past sphere 503 

At T = 0,  f = 0. As T increases the time-dependent part off decreases and 
a flow pattern, which is the response of the fluid to the Lorentz force, is set up. 
The flow patterns set up are symmetric with respect to the axes 8 = 0,  7~ and 
19 = rf: &r. For large T - 

f.: -c0(R2-2-R,,+ 24 

which is the steady-state solution (Chow & Halat 1969). R, varies between - 1, 
corresponding to a perfectly conducting sphere, and 0.5, corresponding to the 
case where the sphere is an insulator. Figures 1 and 2 show flow patterns for the 
cases R, = 0.5 and R, = - 1, respectively, and various values of T .  In  view of (12) 
the time t taken for the establishment of a certain flow pattern is proportional 

Tables 1 and 2 show values of f /A  for some R and T for the cases of an insulating 
and a perfectly conducting sphere, respectively. The data for the tables take 
account of the fact that, in (24) at T = 0, the integral of 9 F ( p ,  R) differs from 
the expected value 

by s(R). If the integral of .YB'(p, R) exp ( - p T )  was found to be g,(R, T )  we 
assumed that it differed from its expected value by sg,/g and modified the data 
accordingly. This modification affected only the last significant figure of 24f/h in 
the tables. From the tablesit canbe seen that, for T = 1 and T = 10, af/aRreaches 
a maximum, from which it decreases. It is, indeed, probable that this is the case for 
all finite T and the value of R that makes i3f/aR maximum increases with T .  Thus 
tho maximum of af/aR a t  T = 50 occurs at R > 6 and is not shown in the tables. 
af/aR may vanish and f have a maximum in which case the flow field set up is 
in the form of four eddies about for stagnation points of the R, 8 plane. If the 
maximum value off, when T = T,, occurs at  R = R,, then the points 

[R,, cos-l( f 1/34)] 

are stagnation points. As T, increases so does R, and the stagnation points 
eventually recede to infinity. This picture, suggesting that the flow field starts 
from the sphere and spreads outwards, is not unrealistic since this flow field is 
induced by the presence of the sphere. Also from the tables and the figures it is 
easy to see that, at any particular finite time T ,  the intensity of the flow field is 
closer to that of its steady value as we approach the sphere. Inspection of tables 
1 and 2 shows also that for a perfectly conducting sphere the development of the 
flow field is faster than for an insulating sphere. It appears, therefore, that 
the smaller (algebraically) the parameter R, the faster the development of the 
flow field. 

to a2PlPo. 

g = - &TR'[R'- 2 - R, + 2Ro/R + (1 - Ro)/R2] 
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